IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 10, OCTOBER 2002 2233

Accurate Modeling of Lossy Nonuniform
Transmission Lines by Using Differential
Quadrature Methods

Qinwei Xu, Student Member, IEEEBNd Pinaki MazumdeiFellow, IEEE

Abstract—This paper discusses an efficient numerical approx- that employ simpldRCtransmission modeling for interconnect
imation technique, called the differential quadrature method delay estimation. As the length of on-chip global interconnects
(DQM), which has been adapted to model lossy uniform and j,creases to a few centimeters or, as in ultrafast circuits, the

nonuniform transmission lines. The DQM can quickly compute . . . . .
the derivative of a function at any point within its bounded domain signal rise/fall time becomes comparable to the time of flight

by estimating a weighted linear sum of values of the function ata across the wire, the inductance values of interconnects play
small set of points belonging to the domain. Using the DQM, the a dominant role in determining signal waveforms and propa-
frequency-domain Telegrapher’s partial differential equations for  gation delay. In order to estimate signal integrity and circuit
transmission lines can be discretized into a set of easily solvable gaaq the delay modeling algorithms in circuit simulators must
algebraic equations. DQM reduces interconnects into multiport . s ..
models whose port voltages and currents are related by rational r.epresent th??’e interconnects as distribiRed trgnsm|s§|on .
formulas in the frequency domain. Although the rationalization lines. In addition, the substrate effect and nonideal dielectric
process in DQM is comparable with the Padé approximation of media require that the shunt conductance between the signal
asymptotic waveform evaluation (AWE) applied to transmission |ine and ground plane or bulk should be nonzero, and widths
lines, the derivation mechanisms in these two disparate methods of interconnects are also shaped appropriately to match the

are significantly different. Unlike AWE, which employs a complex . d t db hi ints. Theref ¢
moment-matching process to obtain rational approximation, the Impedances at corners an ranching points. erefore, a

DQM requires no approximation of transcendental functions, high speed and in large integrated systems like MCMs and
thereby avoiding the process of moment generation and mo- SOCSs, the metal interconnects should be treated as lossy and/or
ment matching. Due to global sampling of points in the DOM nonuniform transmission lines.

approximation, it requires far fewer grid points in order to build Transmission-line characteristics are usually represented by
accurate discrete models than other numerical methods do. The . . . .

DQM-based time-domain model can be readily integrated in a transcendr—;ntgl fupctlons involving frequency gnd Inje length.
circuit simulator like SPICE. Unlike the commercial simulators, AS transmission lines are generally characterized in the fre-
which cannot directly handle nonuniform transmission lines, the quency domain and are usually terminated with nonlinear loads,
DQMSd model no(rjlulnifo_rfm tréll_nsmistsiﬁn lines by USintgt_the Isam? the time-domain models of transmission lines are needed so that
procedure as model uniform lines at the same computational cost. ; ; ;
Numerical experiments show that DOM-based modeling leads thetran5|ent response can be calculated by applying convolution
to high accuracy, as well as high efficiency. For both uniform pperatlgn [2]. A considerable amount of research has bgen done
and nonuniform multiconductor transmission lines, the proposed N the literature to convert the frequency-domain solutions to

DQM technique is thrice faster than a commercial HSPICE time-domain responses. The first useful tool was the fast Fourier

simulator. transform (FFT), which can be employed in most cases. When
Index Terms—Differential quadrature me’[hod, interconnect the inVerse Fourier transform iS directly Used to f|nd the t|me
modeling, nonuniform transmission line, transient simulation. model, the computation complexity becomes proportional to the

square of the simulation time, thus significantly slowing down
the circuit simulators. Moreover, the FFT method has the in-
trinsic aliasing error problem.
UE TO continuing very large scale integration (VLSI) Reduced-order macromodels have been popularly used.
feature size shrinking in CMOS and GaAs technoloAsymptotic waveform evaluation (AWE) is the most
gies, integrated circuits and systems such as multichip modugsil-known method to approximate general linear net-
(MCMs) and system-on-a-chip (SOC) are becoming both larggbrks [3], [4]. In AWE, the Laplace-domain moments of the
in chip area and faster in operation. On-chip interconnects gert characteristics are found to obtain a rational function via
experiencing increased sheet resistance and wiring inductapeglé approximation. The poles and residues of the rational
due to progressive interconnect scaling [1]. The interconndahction are used to describe the reduced-order macromodel.
scaling effect thus poses serious challenges to circuit simulatgfewever, higher order moments lead to undesirable conditions
when increasing the order of moments does not guarantee a
Manuscript received November 21, 2000. This work was supported in partgs‘?tter approximation. Furthermore, AWE may give a reduced
a grant from the Multiuniversity Research Initiative and by a Dual-Use Programacromodel, which includes unstable poles, although the
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the Taylor series expansion of the characteristic function tn. In Krylov-subspace-based methods, a set of orthonormal
multipole points on the imaginary axis. Unlike traditionalectors is used to span the moment vector space and then the
AWE, the frequency-hopping technique tries to preserve tle@cuit matrix is projected into this vector space. Such a manip-
poles rather than the moments. The residues of the poles arewdation leads to multieigenvectors, while AWE converges only
termined using a selected set of low-order moments generatedhe eigenvector corresponding to the eigenvalue with largest
at the various expansion points, which are referred to as hopgdulus. The use of orthonormal vectors helps obtain more than
CFH preserves the poles of the transfer function rather than thee eigenvalue, which is different from AWE. Both Padé via
moments, and it circumvents the ill conditions encountered rancoz (PVL) [13] and its multiport version matrix Padé via
AWE. However, each hop of CFH requires its own expensiteanczos (MPVL) [14] fall into this class of methods. A new
processing time and complex mathematical manipulatiordirection for a passive reduced-order model, shown in [15], is
while AWE only requires one. Two other methods, startingased on congruence transformations, which analyzes the poles
from the Telegrapher's equation and employing two-pole [Thstead of matching the moments or eigenvalues. Nevertheless,
or multipoint moment-matching techniques [8] can obtaian extended technique based on Arnoldi’'s method with con-
reduced-order macromodels, which are extensions of CFH. gruence transformations is presented in the literature [16], in

On the other hand, direct applications of Padé approximatiamich the passive reduced-order interconnect macromodeling
to the transmission-line problem have been performed [9], [1@gorithm (PRIMA) was demonstrated as an effective approach
Using Padé approximation, the characteristic impedance and &xeevelop passive reduced-order models.
ponential propagation functions of the transmission line, which Although the algorithms of model reduction are well devel-
take the form of transcendental functions in the frequency doped, it can only handle the finite systems in the forms of state
main, are converted into rational functions, so they can be anariables. Specifically, the original system to be reduced should
lytically transformed into the time domain. This method givebe described in the form ol 4+ sB = C. Transmission lines,
the device models of transmission lines, just like the companibowever, are represented by nonlinear partial differential equa-
models of capacitance and inductance. However, the transigoms (PDES), which are infinite systems. Hence, it is inevitable
simulation of lossy transmission lines in the time domain ree discretize the lines into discrete models in order to stamp them
quires computationally expensive convolution integrals, whighto the stencil ofA + sB = C prior to reduction process. As
become increasingly more expensive as the simulated time RDEs have been long approximately solved by finite-difference
terval increases. In order to overcome this inefficiency, Lin ar(@D) or finite-element (FE) methods [2], the discretization of
Kuh developed a recursive convolution with linear time effitransmission lines is far from a novel topic. A low-order finite
ciency using exponential functions [10]. Also, in [11], Changnethod to model transmission lines gives a very understand-
and Kang developed a method called the piecewise recursal@e physical explanation of discretization schemes [17]. Such
convolution, which is more efficient. The above methods ex popular approach for discrete modeling directly segments the
tract the transmission-line delay separately, which are accurkte into sections, which is chosen to be a small fraction of the
for the time-delay evaluation. Another well-known techniquayavelength. From a mathematical viewpoint, this approach has
called the method of characteristics (MC) is efficient for solvinipw-order accuracy. Despite its simplicity, it has the disadvan-
Telegrapher’s equations. It is well known that the MC can petage that the number of grid points depends on the minimum
fectly deal with lossless transmission line [12]. With generalizeslavelength of interest, as well as the electrical length of the in-
MC [12], asingle transmission line can be modeled as a two-péetconnect. Consequently, such an approach results in very large
network, which consists of two characteristic impedances andmbers of lumped elements for accurate modeling and, thus,
two voltage sources. Transmission-line models obtained by tiearply increases the number of state variables. A compact dif-
above methods can be implemented into the existing circuit siference method is employed in the literature [18], which has
ulators such as SPICE. However, all these methods are baseétbointh-order accuracy. Though this discretization is still a lower
the single-conductor transmission line having uniform widtharder finite method, the number of unknowns per wavelength
It will be very complex to apply these methods to the couplegquired for highly accurate modeling is smaller and its depen-
and/or nonuniform transmission lines. dence on the electrical length of the line is weaker.

Despite feasibility of dealing with a distributed transmission The drawback of low-order finite methods can be removed by
line, traditional circuit simulators can hardly handle practicalsing the high-order finite methods or pseudospectral methods
VLSI systems. Besides functionality devices, large systems g¢h9], [20]. The mathematical fundamental of FD schemes is
erally include a large number of state variables associated witle Taylor-series expansion. The scheme of a low-order finite
the distributed interconnections and lumgidC elements that method is determined by a low-order Taylor series, while the
result from the modeling of the distribution network. Thereforescheme of a high-order finite method is determined by a high-
the direct use of a time-domain simulator like SPICE is prarder Taylor series. In general, the high-order schemes have a
hibitively inefficient for realistic integrated systems and, thusjigh order of truncation error. Thus, to achieve the same order
is limited only to the analysis of small systems. In order tof accuracy, the mesh size used by the high-order schemes can
overcome this difficulty, model reduction has been employelde much less than that used by low-order schemes. As a result,
A large system is first partitioned into nonlinear systems arte high-order schemes can obtain accurate numerical solutions
linear systems and then the algorithms of model reduction arging very few mesh points. Chebyshev polynomial representa-
performed to linear parts. Krylov subspace techniques suchtias has been used to model the transmission line in the literature
Lanczos and Arnoldi approaches are known for model redye-1], which serves as an example of high-order finite methods.
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In this paper, the differential quadrature method (DQM) ismall set of grid points. Therefore, it involves far fewer com-
employed to model transmission lines. A numerical techniqeiting quantities than the FD and FE methods, nevertheless re-
coming from the spectral method, the DQM was originallyaining the simple features of the direct numerical techniques.
developed by mathematicians to approximately solve nonlinear
PDEs [22]. As an alternative to FD and FE methods, the DQM. Approximation of Derivative in Terms of Function Values
gained use in solving differential equations in fluid mechanics, T
structural mechanics, and other engineering areas. The ide%gﬁ
the DQM is to quickly compute the derivative of a function at
any point within its bounded domain by estimating a weighted .
linear sum of values of théunctionat a small set of points / w(z) de = Z aiulw:) )
belonging to the domain. This paper applies the DQM to model 0
interconnects in the following steps. At first, beginning from
a Telegrapher’s equation in the frequency domain, the DQMere o €0,1]and0 = z, < 22 < - < ay = 1,
discretizes the differential equations as algebraic equatiops, 1,2, ..., N. Equation (1) is called th&/th-order integral
which give the.dllscrete model of thg transmission line. D%adrature application. Following the concept of integral
to the super efficiency of the DQM, high accuracy can be oa'uadrature, the DQM can be employed to approximate the

tained using moderate lower order approximation. TherefOig,iyative of the distributed voltages and currents along trans-
unlike other discrete models necessarily being reduced frofassion lines [24] given by

high-order approximation to lower order one, the algebraic
equations obtained by the DQM are then instead directly N
transformed into compact formation featuring rational approxi- 9 w(zi, t) = Z aiju; () )
mations. The transmission line is thus modeled as a multiport dz " = R
device, and its time-domain model is obtained by applying
inverse Laplace transform. By means of recursive convolutio,na),r first-order derivative and
the model takes the form of a companion model, whose
computation complexity is linear with respect to the simulation " N
time. Although the rational approximations in this method — u(x;, t) = Z ag”)uj(t) 3)
appear like the Padé approximations of AWE, it completely j=1
avoids the moment-matching process of AWE. There has been
theoretical proof showing that the original DQM by Bellmangr higher order derivative, whete € [0, 1],0 = z; < z3 <
is equivalent to the highest order FD method [23]. Due to this. « z, = 1, andi,j = 1,2, ..., N. w(z, t) represent
intrinsic feature of the DQM, the DQM-based modeling leadge distributed voltage(z, ) or currenti(x, t), andu;(t) =
to higher computational efficiency than conventional finitg,(s,, ¢).
methods do. Nevertheless, the afterwards ideas of developings\s the app“cation in this paper 0n|y concerns the first-order
the DQM offer much improvement in both applicability andjerivatives of distributed voltages and currents along trans-
accuracy of the DQM-based modeling of transmission lines. mission lines, we need only to study (2), which is called the
The organization of this paper is as follows. In Section II, th&/th-order DQ approximation.
mechanism of the DQM and several approaches to determingn hoth the integral quadrature and DQ, the quadrature coeffi-
differential quadrature (DQ) coefficients are outlined. The di%ientai ora;; can be determined by using interpo|ating po|yn0-
cretization of Telegrapher’s equations and compact modelifgals. Integral quadratures with a variety of interpolating poly-
are discussed in Section I1I. Section IV gives a heuristic rule fapomials are fully developed in the literature, while the DQs are
determining the DQM's order and accuracy. In Section V, se¥til| in the developmental stage. The DQM has obvious appli-
eral numerical examples are presented and the results of varigagons in the numerical solution of ordinary and PDEs with
DQM algorithms have been compared with the results obtainkflown boundary conditions. In general, the interpolation for-
using HSPICE. mulas are expressed in two ways, i.e., either in terms of dif-
ferences of the function or in terms of values of the function.
The derivatives of a function can also be expressed in the same
Il. DQM manner in both cases. The first case, i.e., the approximation of
derivatives with differences, provides the basis of many methods
Classical numerical techniques such as FD and FE methddss solving differential equations. Well-known methods such
have been fully developed in the literature and are widely usad Euler, Gear, etc. are examples of the low-order FD and FE
to numerically solve differential equations. Despite their widmethods. Although these methods lead to high accuracy given
popularity and uses, they require computationally prohibitivenough grid points, they suffer from large computation time and
time to solve large problems. Consequently, such direct numéreir stable conditions are extremely strict. On the contrary, the
ical methods have been rather sparingly used in modeling msécond case, i.e., the approximation of derivatives with func-
ticonductor lossy transmission lines. Although the DQM is #on values, gives moderately accurate results at a lower cost by
numerical approximation, it can quickly calculate the derivativasing fewer grid points; thus, taking less computation time and
of a function by sampling the exact values of the function atlaving easy stable conditions.

he integral quadrature method is used to approximate the
nite integral of the following form:
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The key procedure to this technique is to determine theéherew;(t) = u(x;, t) and L;(z) is an interpolation function
weighting coefficientsa;;. Following the concept of the determined by:; and interpolating formulation. As a result, the
weighting residual method, a suggested way by Bellman is ¢oefficients in (2) can be determined by

let (2) be exact for test functions

g(z) = {1, =, %, ...

L ey (4)

1) Polynomial Differential Quadrature (PDQ)if L;(x)

By substituting every item in the function set into (2), the foli, () is given as Lagrange polynomials by the following

lowing Vandermonde matrix equations are obtained:

expression:

1 1 a;1 0 H(.Z‘ —.I'k)

R N L Liw) = T (®)

a:% . a:% aiz | — 2x; (5) Jl;[z(xz — %)

x{\"—l x?;—l @GN (N — 1)37?’—2 then calculations from (7) provide the following result:
fori = 1,2, ..., N. Due to the property of the Vandermonde 1 kl;[j(xj — o) o
matrix equation, the coefficient; , a;o, ..., a;y are uniquely @ij = (i — 2;) 1] @i —ax) e
determined by solving the above equations. !
Since the accuracy of the DQM depends on the estimation 1

of a;; coefficients, in (2), an error termy, = e(z;, t) in the aii = Z ——. (9)
Nth-order DQ is added to approximate a first-order derivative iy Ui

as follows:

N
a
% U,(J}i, t) = Jz_:l aijuj(t) + ;.

This process shows that the DQ method is closely related to
the collocation or pseudospectral method [19]. Its principal ad-
vantages over the latter, however, lies in its simplicity of using
grid spacing without any restriction. The grid points in the orig-
inal DQ method are supposed to be equispaced collocations,

lowing conditions are satisfied:
« the first, second,..., and Nth derivative v (z, t),
u®(z, t), ..., uM(z, t) are continuous;
o« w2, t) < K;
then the error can be evaluated by
hN—l

i< K
“=E N

whereh = max(x;41 —2;),5=1,2, ..., N — 1. The above

If the grid points are the zeros of atth-order Chebyshev
polynomial, the following very simple formulas can be obtained
for computing the DQ weighting coefficients:

(_1)i+j(7,N _ 7’1) 1— 52

- J i L
az] ri— 7’]’ 1 _ 7’2‘2 bl 4 7£ J
(TN - 7’1)7’7‘,
i = T a8 10
M=) 4o

equation shows that the DQM approximation has an accurai)€rér, i, rj, andry are, respectively, firsith, jth, and

of Nth order.

B. Determination of DQ Coefficients

Though the DQ coefficients can be obtained by solving (5
it has been theoretically proven that the method using po
functions cannot give higher accuracy when the order of tlgﬁaceVN
DQM is too large. WhenV is large(N > 10), the matrix is

th zeros of an/Nth-order Chebyshev polynomial. This re-
sult is agreeable with that derived by using the presentation
of Chebyshev polynomials in [21]. No matter if the test func-

olynomials, it is easy to show that the high-degree polyno-
fal in every case constitutes @rdimensional linear vector

\Aé;ons are power series, Lagrange polynomials, or Chebyshev

with respect to the operation of addition and multi-
plication. According to the properties of a linear vector space of

ill conditioned and its inversion is numerically difficult [22]. polynomials, function set (4) spans ahdimension subspace of

As a developed version of the original DQM, the generalize?g
differential quadrature (GDQ) [25] and generalized Couocaﬁo&herNth-order polynomial inVy

complete orthogonal base in this linear space, therefore, any
can be uniquely expressed

method [26] are presented. In the practical application of a digs 5 jinear combination of (4). Furthermore, if all the base poly-

tributed transmission line, the voltage or current u(x, t) =

nomials of (4) satisfies a linear relationship [see (2)] so does

{v(, 1), i(z, t)} can be approximated by means of interpOIaa’myNth-order polynomial in the linear space. In thedimen-

tion as follows:

~
w(z, t) ~uN(z, t) = Z Li(x)w(t), z€[0,1] (6)

sion linear vector subspace, there may exist sevErdimen-

sion subsets of orthogonal base polynomials. Each subset of
base polynomials can be uniquely expressed by another subset,
and each different subset lead to a set of unique DQ coefficients.
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TABLE |
MEAN SQUARED ERROR DQM VERSUSFD (N: THE NUMBER OF GRID POINTS)
N 5 10 15 20 25 50 75 100
FD 0.0181 0.0043 0.0019 0.0010 6.6571e-4 1.6430e-4 2.2705e-5 4.0807e-5
N 5 7 9 11 13 15 17 19
PDQ 4.3367e-5 | 7.5297e-9 | 4.6001e-13 | 1.3445e-13 | 1.4850e-13 | 1.4085e-13 | 1.258%-13 | 1.9603e-13
HDQ 0.0101 6.9302e-4 | 5.2277e-5 4.1760e-6 3.4524e-7 2.9192e-8 2.5292e-9 | 2.1988e-10
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In this sense, the approaches shown as (5), (9), and (10) carCbeProperties of DQ Operators

called the PD.Q‘ . ) Once the positions of selected points are fixed, each of the
2) Harmonic Differential Quadrature (HDQ)For elec- aorementioned approaches gives constant DQ coefficients, no
tronic circuits and systems, the Fourier series may be a belfetier in what applications the differential equations appear.
approximation of the true solution than polynomial expansiof}, general, the set of points are selected carefully so that they
An Nth-order Fourier expansion is a linear combination ig.q symmetric with respect to the center of the domain: alterna-
an N-dimension linear subspace, which is spanned by thge|y they can be equally spacing points over the domain. At

following orthogonal base: each pointz = z;, the derivative can be calculated as

0
ox

wherew;(t) = u(z;, t). Therefore, all théVth-order DQ coef-
ficients constitute a matriA., which is called thevth-order DQ

coefficient matrix. Hence, a continuous derivative in the domain
whereN is the number of grid points that is normally an odcﬁ07 1] is discretized to a linear operator
number. In order to determine the weighting coefficients using
sine and cosine functions, let (2) be exact when test functions 9 u=Au
take the set in (11), then the weighting coefficients are deter- Ox
mined by

glz) = {1, sinwzx, coswx, sin 2wz, cos 27z, ..., wi(t) = [ain -~ ain][ur () - - un ($)]F (16)

sin L, COS

—1 Wx} (1D

(17)

whereu = [u(t)---un(t)]?. For instance, the equally
spacing fifth-order DQ coefficient matrix determined by (4) is

N
=1 —25/3 16 —-12 16/3 -1

-1 -10/3 6 -2 1/3

Further study shows tha{z, ¢) in this case is approximated A= 1/3 -8/3 0 8/3 -1/3
by interpolation -1/3 2 -6 10/3 1

1 —-16/3 12 —16 25/3

The above matrix has the property of inverse symmetry with

N
w(e, ) ~uV (2, t) = Y Fi@u(t), x€[0,1]
=1 respect to the central point. In fact, every DQ coefficient matrix

(12)  has such a property, which reduces the computation time for
where finding the coefficients by 50%. The following lemmas formally
. describe the properties of DQM operators:
kl;[i st ((x B x’“)ﬂﬂ) Lemma 1: A DQM operator is inverse symmetric with re-
Fi(x) = T sin (@ — 20)7/2) (13)  spect to the central point of the matrix.
festi ! b Lemma 2: An Nth-order DQM operator has a rank @V —
1).
and the coefficients of the HDQ can be calculated by Lemma 3: The sum of a row of a DQM operator matrix is
zero.
0 = iF(a:») (14) It is observed that the DQ method is an extension of the
Y dg T well-known difference method, which can also lead to a ma-
o ] trix A (FD operator). However, the sparse difference operator
whose explicit computational formulas are consists of tridiagonal matrices, while the coefficient matrix of
the DQ method is not sparse. The difference methodnsigh-
) [T sin ((z;—a1)7/2) boring points to numerically compute the derivative at a point,
aij = — ™/ ) : ; i #4  Wwhile the DQ method employs the mesh points inHeledo-
sin ((z;—x;)7/2) H‘ sin ((;—2)7/2) main. In that sense, the former can be considerddc ap-
a proximation while the latter leads to thgdobal approximation
a; =— Z @ik (15) Consequently, DQ coefficients agéobal coefficientsand they

lti yield highly accurate numerical solutions by using much fewer
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grid points. Table | shows the mean squared error for a signaBy using (17), the frequency-domain Telegrapher’s equations
at timet, v(z, t) = (sinxz)?, x € [0, 1], corresponding to the of a single lossy (RLCG) line are transformed into
DQM and FD (backward Euler method). The comparison be-

tween FD and quadrature results shows that the DQ method pro- D(G) + sD(C) A \2 0 23
duces the same accuracy with much larger mesh size (about ten A D(R) + sD(L)} [ I } - (23)
times larger) and the speed of the DQM is, hence, much faster

than the FD methods. where

I1l. DISCRETEMODELING BY DQMs [ai;] € RNXN

[Vi(s), Va(s), -, V(o)
=[Li(s), Is(s), ..., In(s)]"

Assume that a multiconductor transmission line stretches
from 0 tod along thez-axis of a Cartesian coordinate system,
whered is the length of the line. Le¥'(z, s) andI(z, s) be,
respectively, the Laplace-domain voltage and current vectors at
point z, and let the distributed per-unit-length (PUL) paramet
matrices of the line be denoted byz), I(z), g(z), andc(z),
representing resistance, inductance, conductance, and capaci-

A
A%
I

4nd the other matrices are defined by using (20) as follows:

tance, respectively. Use a linear transformation to normalize the D(L) =diag{L(z1), L(z2), ..., L(zn)}
line stretch|0, d] to [0, 1] by settingz = zd. The normalized D(R) =diag{R(wy), R(z2), ..., R(zn)}
Telegrapher’s equations can be written as D(C) =diag{C(x1), C(x2), ..., Clan)}
p D(@) =ding{G(a1), Glas), ... Glon)}
T V(z, s) =—(sL(z) + R(z))I(x, s) (18)
X

d with the boundary points given byy = 0 andzy = 1.
— Iz, 5) =—(sC(z) + G(z))V(, s) (19) Thus, the Telegrapher’s equations of a single transmis-
dx sion line are discretized to (23). However, as no excitations

where R(z), L(z), G(z), andC(x) are the normalized PUL (boundary conditions) are involved in (23), it thereby has
parameters, which are (;btained by multiplyirig), I(z), g(z), "° nontrivial solutions, which is theoretically resulted from
andc(z), respectively, by the length of the transmission kihe the properties of DQ operatordgmmas 1B As in the

In order to concisely express some of the manipulations r%e_\sles W'rt]h the F_D method, here 6_“50’ we canhana;]Iogously
quired in a matrix, the following terminologies are first define eplace the equations at an appropriate point within the range

here z1, z2, ..., xn ) by those at the boundary conditions. An
Definition 1: A discretization operatoD discretizes a func- alternative is to enforce (23), holding at each interior grid points
it =2,..., N —1, and to force the boundary conditions

tion f(x) into a diagonal matrix whose entries are functio

values at the grid pointe., s - -z} olding at the end points; andxzy. The discretized Telegra-

pher’'s equations with boundary conditions can be written as
follows:

o ) ) D(G) A A% D(C) 0 A% Br
Definition 2: Let X be anm x n matrix. A colon notation L A D(R)} { I } ts { 0 D(L)} { I } = {Bv} .
denotes that the specific rows and columns of a matrix are (24)
lected to define a submatrix. ThuX;.; isthe(j — i+ 1) x n
submatrix (between thigh and;th rows) ofX.

A. Single Transmission Line B. Multiconductor Transmission Lines

At first, we will derive the discretized DQM model for a The above technique for a single transmission line can be now
standalone single transmission line. Assume that the distribudgended to model multiconductor transmission lines, where the

voltage and current in (18) and (19) be interpolated and appré@nductors are closely spaced to include coupling effects be-
imated by tween them. Assuming that the transmission lines are comprised

of M-coupled interconnects that have a common reference, the

N Telegrapher’s equations for an individual line in this case trans-
Viz, s)=> xi(x)Vi(s) (21) form into (25) and (26) as follows:
i=1
N d M
I(z, )= xi(x)Ti(s) (22) 7 iz s) =— 221 [sLij(@) + Rij(a)|I;(x, 5)  (25)
i=1 =
. N d M
where x;(z) is the function like (8) or (13) and/(s) = d_Ii(x’ s) :_Z [sCij(2) + Gij ()] Vj(a, s).  (26)
Vi, s), Li(s) = I(x;, s). z =
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In order to apply a DQM operator to every derivative, the On the other hand, DQM modeling supplies general discrete
distributed voltage and current along the line are, respectiveiypdels ready for the circuit reduction. In order to apply Krylov

discretized as

Vi = [‘/i(xla 3)7 ‘/i(x% 8)7 (RS ‘/i(xN7 S)]T

T
Ii = [Ii(.’ljl, S), Ii(.’ljg, S), ey Ii(a:N, 8)]

and the distributed parameters are discretized as

subspace techniques for the model order reduction, the coef-
ficient matrices of the voltage and current variables must be

first-degree polynomials ig [21]. The first order with respect

to s in (24) and (27) allows to reduce a large subnetwork con-

taining distributed transmission lines to a small macromodel.

C. Compact Models Based on Discretization
The admittance matrix model based on the discretized model

D(R;;) =diag{Rv(aZ1) Rij(ws), ... Rv(a:N)} can be obtained by calculating(s) and I (s) while setting
“ _ AR AT T Vi(s) = 1 andVy(s) = 1. The state equation takes the form
D(L“) :dlag{Lij(azl), Lij(aig), ey Lij(a:N)}
D(G“) :dlag{GU (.’L’l), Gij(.’rg), PN Gij(.’L'N)} (P + SQ)X _ B (28)
D(C“) =d1ag{CiJ (371), Cij(xg), . C’ij(a:N)}
each of which is aV x N matrix. where the matrices have the following form:
In a similar way to the single conductor, enforcing the _
boundary conditions at the end points and xy, we can X = V}
obtain the discretized Telegrapher’s equations with boundary L1
conditions for multiconductor transmission lines b 'D(G) A
. ) A R R R - A// D//(R)
D(AG) A Vv 4s D(C) 0 V|_|bs -
A Dw|i o D@]||T]7 |by Q= |P© 0 }
(27) | 0 D'
0 ... 0 1 ... 01%
where B:_O o 00 1
¥ T
V=[ViVuy] in which D”(L) andD” (R) are represented by
I=[I---Iy]"
FA 0 D”(L) =diag{0, L(z2), ..., L(zn_1), 0} (29)
A=|: 5 D"(R) =diag{0, R(z,), ..., R(zxy_1), 0}  (30)
L O A
D(Ry;) -+ D(Ryy) andA” is a matrix generated by replacing the first a¥ith row
D(R) = . ) . of matrix A with vector{l1 0---0} and{0---0 1}, respec-
: N : tively. Using the definition ofcolon notation it is represented
| D(Ba1) -+ D(Rym) by
) D(].le) - D(L.:LM) 10.-.-0
D(L) = : : A" = | Ay.noy | - (31)
| D(Lan) -+ D(@Lam) 0---01
[ D(G11) -+ D(Gim) The admittance matrix follows:
bD@=| : .
| D(Ga1) -+ D(Guwr) Y =BY(P +s5Q)"'B. (32)
[ D(C11) D(Ciar)
]3(0) _ : : Similarly, each of the entries of admittance matrix is approxi-
D(é ) D(O. ) mated by a rational formula, whose numerator and denominator
L M1 MM

have the same highest order, i/ &N — 4)th.
Likewise, the admittance matrix of a multiconductor trans-

Inverse Laplace transforms of (24) and (27) lead to first-ordgfissjon line can be calculated. Derived from (27), the state

ordinary differential equations, which represent the time-d@yuation in this case follows:
main models of interconnects. The time-domain responses at
the ends of transmission lines can be obtained by solving ordi-
nary differential equations.

(P+sQ)X =B
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where where each ofYy;, Yin, Yn1, and Yy is a rational ap-
o proximation whose numerator and denominator are both
X = Y} (2N — 4)th-order polynomials. Let us consideri(s).
| I Applying Heaviside’s theorem, it can be decomposed in the
o F (@) A } following form:
- A// ]5// R n
L R ( ) Z aksk "
r = Ap .
= |P@ o0 Yi(s) =22t = 3 (36)
L o D) S sk U AT ST
T k=1
0 0 1 0 0 --- 0
0 0 1 0 --- 0 The inverse Laplace transform of (36) is
B= n
ap
0 00 - 0L 0 yi(t) = 37 6() + > g exp(pit) 37)
0 oo .- 020 -1 n k=1

and the other entri€g; x (s), Yn1(s), andYxn(s) can be simi-
larly formulated. Thus, taking the inverse Laplace transform of
(35), we can obtain the time-domain counterparts

in which A”, D”(L), andD” (R) are defined accordingly [see
(29)-(31)] as follows:

TAY ... 0
Ao | oo i1(t) =y11(t) * v1(t) + i (t) * on(t) (38)
i 0 ... A" in(t) =yni(t) * vi(t) + ynn(t) *on(t) (39)
[ D"(Ri1) -+ D"(Rim) where " denotes the convolution operation, andt), v (t),
D”(R) = : . ‘ 11(t), andix (¢) are, respectively, the time-domain counterparts
"o . " of Vi(s), Vn(s), I1(s), andIn(s).
| D" (Ran) D"(Ruwm) Asy (t) is castin exponential form, the convolution integra-
[ D"(L1u1) - D"(Linm) tion in (38) and (39) can be calculated by applying the recursive
ﬁ”(L) _ : . . convolution [10], and the companion model can be developed,
: ' ' which has linear complexity with respect to the simulation time.
i D// (L]\ll) . D//(L]\l]\l) p y p

Similarly, the companion model of multiconductor transmission

. . . lines can also be derived.
Therefore, the admittance matrix for multiconductor trans-

mission lines can be calculated b
y IV. ORDER AND ACCURACY OFDQM MODELING

v —B7 (f, + sQ) - B (34) A good way to determine the order and accuracy of the DQM
is to apply the Chebyshev pseudospectral expansion [28], [29].
According to [29], the maximum frequency of interest can be
D. Companion Models evaluated by

Circuit reduction can be performed on discrete models of a
transmission line, as is done in much of the literature. Instead fmax = i

of following this approach, we have directly developed com- "

panion models from a discrete model. In order to handle noffheret: is the rise time of the input waveform. The maximum
linear and time-varying systems, a time-domain model of eaff§duency determines the minimum wavelength within the spec-

kind of device is needed. According to the literature [27], iffal range of interest. A heuristic rule for satisfying the resolu-

order to achieve maximum efficiency in a reasonable time, ttign requirements of Chebyshev expansions is to use at least four

line simulation should be based on a device model that ddedlocation points per wavelength [29], and a resolution of two
not require the introduction of current variables. ConsideriffINts per wavelength is sufficient for the modified Chebyshev
the modified nodal analysis (MNA) matrix requirement, the adiethod [28]. , _
mittance-formed model is preferred. In (32), each item in the It iS Significant that the Chebyshev expansion method is,
admittance matrix is a rational formula having the order of it§ fact, equivalent to the DQM in case its coefficients are
numerator and denominate = (2N — 4)) determined by the determined by Chebyshev polynomials [called Chebyshev

DQ orderN. By using the technique of recursive convolutioifferential quadratures (CDQs)]. Therefore, the criteria for
on (32), a companion model can be constituted. the selection of collocation points are basically applicable

For an example of a single transmission line, the admittanf® CDQ. However, as the order of Chebyshev expansion
matrix in (32) can be represented by increases, the collocation points of the zeros of Chebyshev

polynomials tend to concentrate at two ends of the line. For
v — Yii(s)  Yin(s) (35) the nonuniform transmission line, it leads to an oversampling
T Yai(s) Yan(s) of the voltages and currents at the end points of the line and an

(40)
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10' T T T 10°

— Exact
— — HDQ (order=7)
PDQ (order=7)
—- CDQ (order=7) 10
+_FD (100 sections)

Aptitude|A|
Relative error of |A|
=

, ot — HDQ (order=9)
v — - CDQ (order=9)
! ! —- PDQ (order=9

I I I I I 10” ¢ L 1 1 L I
0 05 1 15 2 25 3 3.5 4 4.5 5 o 1 2 3 4 5 6 7 8 9 10

Frequency(rad/s) x10"° Frequency(rad/s)

Fig. 1. Frequency responses by DQM and FD modeling. 10° T r r . . r . T
o' HDQ (order=15) i I3
. - I = I
undersampling at the center segment of the line. The crowde - - CDQ fordr=15) I i
. . . ° L - order= g 4
points at the boundaries and the sparse points at the centerv ’\ N

cause significant loss of accuracy when handling a nonunifort 1o
transmission line. -

On the other hand, DQM with coefficients determined by hars
monic functions (called HDQs), overcomes this difficulty. The§1o4
grid points of an HDQ need not be equally spaced, and therels o
can be discreetly selected by the user. In this paper, in ord”
to determine the HDQ coefficients, we select the collection o °
points that are equally spaced over the entire length of the tran _ ,
mission line. In this way, the coefficients can be completely de
termined as fixed constants and can be applied to any proble 7}
in general.

In order to verify the accuracy of the DQ method, a prac
tical example is discussed below. A part of a GaAs/InP inter-
connect used by the authors and their co-researchers to de§igr2. Relative errors of ninth- and fifteenth-order DQM modelings.
ultrafast circuits [30] is modeled as a single transmission line.

The PUL parameters are extracted by the methods illustratedtian that of any other DQM with the same order. The relative er-
[31] and are set tb = 360 nH/m, ¢ = 100 pF/m,» = 100 /m, rors of a higher order HDQ, CDQ, and PDQ are shown in Fig. 2.
andg = 0.01 S/m. The line length is assumed to be 4 cm. By

employing the abovementioned procedure, the transmission line V. CIRCUIT FORMULATION AND APPLICATIONS

can be represented as an equivalent two-port model. The model presented in the previous sections can be directl
Fig. 1 shows the frequency-domain response of the voltage P P y

transfer function of the two-port model. It is noted that the HD corporated in formulating circuit models in the frequency do-

gives higher accuracy than other methods, and the accuracy Oafm, as well as in the time domain. Consider a linear circuit

the conventional ED method is the lowest. A heuristic rule f et that contains linear lumped components and multiconductor
the resolution of the HDQ is to collect two points per minimu ransmlssmn—lme s_ystems.. Without IOSS.Of g_enerfahty, the time-
wavelength in the spectrum domain MNA matrix equations for the circuiket with an im-

pulse excitation as its source input can be written as [32]

_4

5
Frequency(rad/s}

N=2

+2. (41) d v,
net% Vet (t) + Gnetvnet (t) + kz:l Pklk (t) = Bu(t)

By this rule, the seventh-order HDQ can guarantee high ac- (42)
curacy within the frequency band from zero to more than 4gherev,..(¢) € R™ is a vector containing the node voltages,
Grad/s, as shown in Fig. 1. That means, besides the two éndependent voltage source, and all other additional variables,
points, only five inner points along the transmission line aB € R™, Bu(t) is a vector representing the excitations from
needed to obtain the accuracy in Fig. 1, while the FD methdde independent sourc€,.; € R**" andG,., € R"*" are
cannot guarantee accuracy even if 100 grid points are sampleshstant matrices formed by linear lumped components:Qf
It is also shown that the accuracy of the HDQ is more accurdly, € R™* ™, which has entriep;; € {0, 1}, is a selector

)\Inin
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Fig. 5. Step response for a single transmission line.

15 2
Frequency(rad/s}

Fig. 4. Frequency responses by different DQMs.

matrix; it mapsix(t), the terminal currents of the line system or
additional variables into the node space of the cireat, and £ 6 circuit of a coupled transmission line.
N, is the number of subnet.

The DQM models of transmission lines described by (2 . . :
. . ; - DQ method can give accurate transient results. In this example,
and (27) or their companion models can be incorporated info T . .

DQ method samples only five inner grid points along the

(42) as an MNA stamp. We next present several examples. tﬂa\nsmission line. If the FD method is employed to solve the

the PDQS. and. HDQs used in these examples empqu eqL.JaQ/ample, at least between 5000 grid points are needed to
spaced grid points, and the CDQ employ Chebyshev grid points, .
) e ) . : achieve the same accuracy.
Since the distributions of the grid points have been fixed, all the s .

. . . ) Thesecond examplee study in this paper consists of three
DQ coefficient matrix used in these examples are available con- Co S

. : coypled transmission lines, as shown in Fig. 6. The length of

stants, which have been already obtained by the approachesS 0 T .
Section I each transmission line is 5 cm and its RLGC parameters are

) . . Lo . represented in the following matrices:
The first exampleis a single transmission line, as shown in

Fig. 3. The length of this transmission line is 8 cm, and the PUL

parameters are = 360 nH/m, ¢ = 100 pF/m,» = 100 €/m, R — 3'?)48 3.1(1)48 8 Q/cm
andg = 0.01 S/m. The applied input is a step voltage whose 0 0 3.448
rise time is 0.2 ns. - -

The propagation velocity along the line is 5/310° m/s, and (4976 0.765 0
by (40), the maximum frequencf... = 5 GHz. By applying L=]0765 4.976 0.765| nH/cm
(41), the order of the DQM is calculated as seven. Therefore, we | O 0.765  4.976 |
employ the seventh-order HDQ, CDQ, and PDQ, respectively,

‘e . 1.082 -0.197 0

to compute the frequency responses of the transmission line,
as shown in Fig. 4. Obviously, the result of the HDQ is most C= _06197 _(1)3;71 _(1)(1)22 pFlem
agreeable with the exact value. ) )

The transient responses of the transmission line corre- G =0.

sponding to HDQ, CDQ, and PDQ modeling are shown in

Fig. 5 along with the response obtained using the commercialSince the HDQ vyields results closer to HSPICE, in this ex-
simulator HSPICE. The transient result of the HDQ is morample of three coupled transmission lines, the HSPICE result is
agreeable with that of HSPICE than the other two types obmpared with the results of seventh-, ninth-, and eleventh-order
DQMs investigated in this paper. HSPICE employs a multipldDQs. These correspond to deriving the harmonic coefficients
lumped-filter section to generate the transient behavior in thg sampling seven, nine, and 11 equally spaced grid points on
time domain [33]. From these empirical studies, it may bthe transmission lines. The transient responses of point A are
noted that, compared to other numerical methods, the low-ordéiown in Fig. 7, those of point B are shown in Fig. 8, and HDQ
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Fig. 8. Transient responses at B of a coupled transmission line.
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Fig. 9. Circuit of nonuniform interconnects.
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Fig. 10. Nonuniformity of the transmission line.

lines, the PUL parameters of the nonuniform transmission line

can be represented as follows:

results are compared with HSPICE results. It shows that the
ninth-order DQ method gives more accurate results than the sev-
enth-order DQ method. Generally, a higher order DQ method
can give more accurate results. However, a higher order Qpere
means sampling of more points within the transmission line and
more computation time for DQ coefficients. In practical applica-
tions, the DQ order can be selected no greater than 11. In our ex-
periments, we found that the selection of a DQ order within the
recommended range yields considerable accuracy while main-

taining high computational efficiency.

One of the advantages of the proposed DQ method is that
the technique can be applied without any difficulty to solve the
multiconductornonuniformtransmission lines. We next study

thethird exampleof three lossy G > 0) and coupled nonuni-
form transmission lines, as shown in Fig. 9. Since the width of The nonuniformity of the transmission line can be shown as

[ L(z) Lm(x) 0
L= |Lm(z) L(z) Lm(z)
| 0 Lm(z) L(x)
C(z) Cm(x) 0
C=|Cm(z) C(z) Cm(x)
| 0 Cm(z) C(x)
[R(z) 0 0
R= 0 Rz) 0
0 0 R@]
[G(z) 0 0
G= 0 G 0
L 0 0 Gla)]
L(x) =387/((1 + k(z)) nH/m
Lm(x) = k(x)L(x)
C(z) =104.3/(1 — k(z)) pF/m
Om(z) = —kz)C(x)
R(x) =50/ (1+ k(x)) ©/m
G(z) =0.01/(1 — k(z)) SIm
k(z) =0.25(1 + sin(6.257z + 0.257)).

the lines are assumed to vary across the length of transmisdiag. 10.
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Fig. 12. Transient response at B of nonuniform interconnects.

The excitation is a 3-ns pulse with rise/fall times of 0.5 ns. 0
With seventh- and ninth-order harmonic coefficients, the tran- ) .
sient responses of points A and B as computed by the HDQ are Time(ns)
shown in Figs. 11 and 12. In order to verify the accuracy and ef-
ficiency of the DQ method, we apply HSPICE to this exampl&9- 15-  Transient response of example 5.

Since the nonuniform transmission line cannot be handled by

HSPICE directly, the nonuniform line can only be incorporated The fourth examplgsee Fig. 13) shows a part of an MCM
into HSPICE in an indirect and inefficient way. We segment tharcuit containingRLC lumped elements and distributed inter-
lines into eight equal sections, each of which is regarded as@nnects. For each of the interconnects in Fig. 13, the distributed
uniform line. In Figs. 11 and 12, the results of the DQ methagsistance ig2 = 100 2/m andG = 0. The input is an impulse
and HSPICE are shown to match well, but the efficiencies wfith 3-ns width and 0.1-ns rise/fall time. By using a fifth-order
these two approaches are quite different. Since the time stegP@fQ model to represent the interconnects, the transient results
HSPICE is subject to the least flight delay of all the transmissi@re shown in Fig. 14 compared to the results of the FD model
lines, it cannot be too large to achieve an accurate transientfrem HSPICE. On a Sun Ultra-1 workstation, the transient time
sult. In this example, HSPICE generates the indicated respon$the DQM is 0.38 s, while that of HSPICE is 1.44 s.

in 5.527 s using a time step of 7 ps, while the HDQ method needsThefifth examplés to further test the efficiency of the DQM.
only 1.56 s to yield the similar response. The above compufBhe circuit is constructed by cascading five identical cells, each
tion times are based on the programs running on s Sun Ultraflwhich is the circuit shown in the dashed frame of Fig. 13.
workstation and do not include the time pertaining to readinthe transient responses in Fig. 15 are calculated by using a
and writing of files. fifth-order PDQ model, as well as an HSPICE model. On the




XU AND MAZUMDER: ACCURATE MODELING OF LOSSY NONUNIFORM TRANSMISSION LINES

same Sun workstation, the transient time of the DQM is 3.44 s,[3]
compared to the transient time of HSPICE, i.e., 10.84 s.
[4]
VI. CONCLUSIONS

In this paper, we have derived new transmission-line modelgs]
by employing a powerful numerical computation technique,
called the DQM. Unlike the FD and FE techniques, which [g]
compute functions and their derivatives over a cluster of locally
neighboring points, the DQM discretizes the transmission Iinem
into few grid points across the entire length of the transmission
line and computes the electrical parameters at those pointl
in order to derive transient response of the transmission line.
Based on the discrete models, compact models can be obtained,
which take the form of rational approximations in the frequency [°]
domain and, thus, the companion model in the time domain
can be obtained by an inverse Laplace transform and recursiyen]
convolution. Although the rational approximations of DQM
models in the frequency domain are like the results of Padf'h]
approximation of AWE, the DQM solution procedure differs
significantly from the AWE algorithm. One notable feature of
the DQM is that it is more stable than AWE since it avoids they; )
moment generation and moment-matching process altogether.

We have demonstrated how to compute DQ coefficient%s]
using harmonic functions and polynomials. Other techniques
like the shifted Legendre polynomial, spline fitting, etc. can be
studied and compared with the existing methods. In practica{ll‘”
application, all the DQ coefficient matrices are fixed constants,
which have been readily calculated prior to any modeling15]
process. From our study with three DQ methods, we observe
that the HDQ method, where DQ coefficients are determined
by harmonic functions, yields the most accurate results. A6l
s-domain DQM-based discrete model has matrix representation
whose elements are first degree with respeet ehich is com-  [17]
patible with Krylov subspace techniques for circuit reduction.
The companion model derived from the discrete model can bgg;
directly incorporated into circuit simulators such as SPICE.
The HDQ has been shown to produce highly accurate delaﬁgl
models for both single and multiconductor transmission lines,
having both uniform and nonuniform shapes. Unlike com-20]
mercial simulators, which cannot directly handle nonuniform
transmission lines, DQMs model the nonuniform lines by using
the same procedure as model uniform lines and, therefore, at
the same computational cost. Despite the fact that the DQM 8
a direct numerical computation technique, it remains stable and
generates solutions faster than HSPICE (about three times) afd!
many other well-known techniques.
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